Bound-preserving discontinuous Galerkin methods for relativistic hydrodynamics

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bound-preserving discontinuous Galerkin methods for relativistic hydrodynamics

In this paper, we develop discontinuous Galerkin (DG) methods to solve ideal special relativistic hydrodynamics (RHD). In RHD, the density and pressure are positive. Units are normalized so that the speed of light is c = 1. Therefore, the velocity of the fluid has magnitude less than 1. To construct physically relevant numerical approximations, we develop a bound-preserving limiter to the schem...

متن کامل

Discontinuous Galerkin Methods for Extended Hydrodynamics

This dissertation presents a step towards high-order methods for continuum-transition flows. In order to achieve maximum accuracy and efficiency for numerical methods on a distorted mesh, it is desirable that both governing equations and corresponding numerical methods are in some sense compact. We argue our preference for a physical model described solely by first-order partial differential eq...

متن کامل

Runge-Kutta Central Discontinuous Galerkin Methods for the Special Relativistic Hydrodynamics

Abstract. This paper develops Runge-Kutta PK-based central discontinuous Galerkin (CDG) methods with WENO limiter to the oneand two-dimensional special relativistic hydrodynamical (RHD) equations, K = 1,2,3. Different from the non-central DG methods, the Runge-Kutta CDG methods have to find two approximate solutions defined on mutually dual meshes. For each mesh, the CDG approximate solutions o...

متن کامل

Bound-preserving discontinuous Galerkin methods for conservative phase space advection in curvilinear coordinates

We extend the positivity-preserving method of Zhang & Shu [49] to simulate the advection of neutral particles in phase space using curvilinear coordinates. The ability to utilize these coordinates is important for non-equilibrium transport problems in general relativity and also in science and engineering applications with specific geometries. The method achieves high-order accuracy using Disco...

متن کامل

Discontinuous Galerkin Methods for Relativistic Vlasov-Maxwell System

The relativistic Vlasov-Maxwell (RVM) system is a kinetic model that describes the dynamics of plasma when the charged particles move in the relativistic regime and their collisions are not important. In this paper, we formulate and investigate discontinuous Galerkin (DG) methods to solve the RVM system. When standard piecewise polynomial functions are used to define trial and test spaces, the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Physics

سال: 2016

ISSN: 0021-9991

DOI: 10.1016/j.jcp.2016.02.079